If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-244=0
a = 1; b = 8; c = -244;
Δ = b2-4ac
Δ = 82-4·1·(-244)
Δ = 1040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1040}=\sqrt{16*65}=\sqrt{16}*\sqrt{65}=4\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{65}}{2*1}=\frac{-8-4\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{65}}{2*1}=\frac{-8+4\sqrt{65}}{2} $
| 3/2h-1/3h+1=8 | | 3/2h-1/3h=11=8 | | 120=7n+n2 | | 5+3/8x=32 | | 14y-8y=30 | | 7x-14=3(x=4) | | 7x-14=3(x=4 | | -16+n=-5 | | 3r+-2(r-2)+1=2(5r-3) | | 3(x=5)=5x=7 | | (X^2+8x)^2+23(x^2+8x)+112=0 | | 5/6x+2=x/3-7 | | x=9/5(1/2x+32) | | 19+(-4c)=17 | | -5(x-10)=6(x-10) | | -32=b+4 | | p=1=5p+3p-8 | | b3^2=15 | | -5x(x-10)=6(x-10) | | 100=36x | | -9=6(y-4)-3y | | |2d-5|=3 | | 3x+x+3x+x=400 | | -8x-15=-111-9x | | 59-y=225 | | 55/p=22/55 | | 5(x+2)-10=10x-20 | | 2(4v+2)=8v+5 | | 5x2+117x−72=0 | | -6x+35=−6x+35 | | (a+(3))^2=64 | | x-x/2-x/5=27 |